1JZ Engine

JZ-series engines were manufactured from 1990 to 2007, these engines dates back to the “second wave” of Toyota engine’s manufacturing, when the first wave of the engines (and earlier years, as in this case) were replaced with less reliable. The more so that the series JZ replaced by a series of M, which I think is the most successful in the history of Toyota!

Toyota 1JZ Engine Specs

Manufacturer Tahara Plant
Also called Toyota 1JZ
Production 1990-2007
Cylinder block alloy Cast-iron
Configuration Straight-6
Valvetrain DOHC
4 valves per cylinder
Piston stroke, mm (inch) 71.5 (2.81)
Cylinder bore, mm (inch) 86 (3.39)
Compression ratio 8.5
Displacement 2492 cc (152.1 cu in)
Power output 125 kW (170 HP) at 6,000 rpm
147 kW (200 HP) at 6,000 rpm
205 kW (280 HP) at 6,200 rpm
205 kW (280 HP) at 6,200 rpm
Torque output 235 Nm (173 lb·ft) at 4,800 rpm
251 Nm (185 lb·ft) at 4,000 rpm
363 Nm (268 lb·ft) at 4,800 rpm
379 Nm (280 lb·ft) at 2,400 rpm
Redline 7,000 (VVTi)
HP per liter 68.2
Fuel type Gasoline
Weight, kg (lbs) 207 (455)
Fuel consumption, L/100 km (mpg)
for Supra Mk 3
15.0 (15)
9.8 (24)
12.5 (18)
Turbocharger  Naturally aspirated
2x Toyota CT12A
1x Toyota CT15B
Oil consumption , L/1000 km
(qt. per miles)
up to 1.0
(1 qt. per 750 miles)
Recommended engine oil 0W-30
Engine oil capacity, L (qt.) 4.8 (5.1)
Oil change interval, km (miles) 5,000-10,000
Normal engine operating temperature, °C (F) ~90 (195)
Engine lifespan, km (miles)
-Official information

400,000+ (250,000)
Tuning, HP
-Max HP
-No life span loss



Toyota Crown
Toyota Mark II
Toyota Supra
Toyota Brevis
Toyota Chaser
Toyota Cresta
Toyota Mark II Blit
Toyota Progres
Toyota Soarer
Toyota Tourer V
Toyota Verossa

Toyota 1JZ Engine modifications


Output for the early non-turbo (1990-1995) 1JZ-GE was 170 PS (125 kW; 168 bhp) at 6000 rpm and 235 N·m (173 lb·ft) at 4800 rpm.
Later released non-turbo (1995->) 1JZ-GE had an output of 200 PS (147 kW; 197 bhp) at 6000 rpm and 251 N·m (185 lb·ft) at 4000 rpm.

The 2.5-litre 1JZ uses oversquare bore dimensions (86 x 71.5mm) and, in naturally aspirated guise, a 10:1 compression ratio.

With the aid of a DOHC, 24-valve head and a dual-stage intake manifold. Like all JZ-series engines, the early 1JZ-GE is designed for longitudinal mounting and rear-wheel-drive.

All of these models also came with a 4-speed automatic transmission as standard; no manual gearbox option was offered.


First Generation 1JZ-GTE in a 1991 Toyota Chaser

Third Generation 1JZ-GTE VVTi transplanted into a 1989 MX83 Toyota Cressida

The first generation 1JZ-GTE employs twin CT12A turbochargers arranged in parallel and blowing through a side-mount or front mount air-to-air intercooler. With an 8.5:1 static compression ratio, the factory quoted power and torque outputs are 280 PS (205 kW) at 6200 rpm and 363 newton metres (268 lbf·ft) at 4800 rpm. The bore and stroke are the same as for the 1JZ-GE: 86 mm (3.39 in) bore × 71.5 mm (2.81 in) stroke. Yamaha may have had a hand in the development or production of these engines (possibly the head design), hence the Yamaha badging on certain parts of the engine, such as the cam gear cover. In 1991, the 1JZ-GTE was slotted into the all-new Soarer GT.

The early generation 1JZ-GTEs combined the inherent smoothness of an inline 6-cylinder engine with the revving capacity of its short stroke and early power delivery of its small, ceramic wheeled turbochargers. The ceramic turbine wheels are prone to delamination in the setting of high impeller rpm and local temperature conditions, usually a result of higher boost. The first generation 1JZs were even more prone to turbo failure due to there being a faulty one-way valve on the head, specifically on the intake cam cover causing blow-by gases to go into the intake manifold. On the exhaust side, a decent amount of oil vapor flows into the turbos causing premature wear on the seals. The later second generation engines had this problem fixed and in Japan there was actually a recall in order to repair the first generation engines, though that does not apply to 1JZs imported to other countries. The fix is simple, and involves replacement of the PCV valve (2JZ); all parts are available through Toyota.

The third generation of the 1JZ-GTE was introduced around 1996, still as a 2.5-litre turbo, but with Toyota’s BEAMSarchitecture.[2] This included a reworked head, newly developed continuously variable valve timing mechanism (VVT-i), modified water jackets for improved cylinder cooling and newly developed shims with a titanium nitride coating for reduced cam friction.[3] The turbo setup changed from parallel twin turbo (CT12A x2) to a single turbo (CT15B). The single turbo is in part made more efficient by the use of smaller exhaust ports in the head, this allows the escaping exhaust gasses to have more velocity as they exit the head, which in turn, spools the turbo faster and at lower RPM.The adoption of VVT-i and the improved cylinder cooling allowed the compression ratio to be increased from 8.5:1 to 9.0:1. Even though the official power figures remained at 280 metric horsepower (205 kW) at 6200 rpm, torque was increased by 20Nm to 379 newton metres (280 lbf·ft) at 2400 rpm. These improvements resulted in increased engine efficiency that reduced fuel consumption by 10%. The adoption of a much higher efficiency single turbocharger than the twins as well as different manifold and exhaust ports were responsible for most of the 50% torque increase at low engine speeds. This engine was used primarily in Toyota’s X chassis cars (Chaser, Mark II, Cresta, Verossa), the Crown Athlete V (JZS170) and in the later JZZ30 Soarer, as the JZA70 Supra was long discontinued by this time.


In around 2000, Toyota introduced what are probably the least recognised members of the JZ engine family – the FSE direct injection variants. These FSE 1JZ and 2JZ engines are aimed at achieving minimal emissions and fuel consumption together with no loss of performance.

The 2.5-litre 1JZ-FSE employs the same block as the conventional 1JZ-GE; everything up top, however, is unique. The ‘D4’ FSE employs a relatively narrow angle cylinder head with swirl control valves that serve to improve combustion efficiency. This is necessary to run at extremely lean air-fuel ratios around 20 to 40:1 at certain engine load and revs. Not surprisingly, fuel consumption is reduced by around 20 percent (when tested in the Japanese 10/15 urban mode).

Interestingly, normal unleaded fuel is enough to cope with the FSE’s 11:1 compression ratio.

The direct injection version of the 1JZ generates 147 kW (200 PS; 197 hp) and 250 N·m (184 lb·ft) – virtually the same as the conventional VVT-i 1JZ-GE. The 1JZ-FSE is always used with an automatic transmission.

Toyota 1JZ engine tuning


Fuel pump

All starts with the fuel pump. In stock when the pump was new, he gave 180 L\h, and it is enough to approximately 1 bar. But what is your car’s age? That’s right! You can measure it, but how to do it correctly only a few knows. Ideally, you should remove the pump for this procedure. The correct solution – just replace it with a new one. If this is not done, and you wind the pressure when the pump can not cope it = say hello to detonation and the engine’s death.

Today there is a huge range of pumps. The most preferred in terms of price / performance is, in our opinion, Walbro 255 l \ h. It is also slightly more expensive, you can take the pump from the American Supra 280 l \ h, Sard 280 l \ h, Tomei 280-300 l / h, etc. An alternative low-cost option is to use a pump from GTR, which gives about 240-250 l \ h, but it is already used and it needs to be measured. There were many cases where these pumps come already dead or die after a small time of operation.

Boost Up

We meant that the pump has been replaced. Then boost up begins with the exhaust. Power releasing can not take place without the release of uniFLOW. In contrast to the widely accepted, the release is not “add”, and releases the already available power. Standard Edition, including the catalyst does not allow the exhaust gases go out with sufficient speed and therefore engine “throttled”. Our task – to give it to “breathe”.

“Barrel” of catalyst must be removed and replaced with the desired pipe diameter. Often these machines is already up to the release of the catalyst, ie the pipe section to the larger of the “barrel”. The simplest version of events is simple removal of the barrel and insert a piece of pipe in the place of transition between the diameter of the outlet itself and the receiving tube (that’s what comes from the turbines). A better solution would be replaced and downpipe to a larger diameter. It is possible to buy a ready-made pipe, and make yourself the benefit of any welder to deal with that. We just need to find a thin-walled tube (2-3mm) and bend 90 degrees and pile of this exhaust pipe. The cross section of release for boost up recommended from 76 to 80mm. If the whole issue, including a reception pipe of this diameter will be – perfect!

We recommend the use of resonators, one or two after the former “barrel” of the catalyst to minimize noise on the issue. If this is not possible, use silencers (plug in a jar, reducing the diameter).

It is argued that the exhaust pipe can leave the standard, and then release should be as wide as possible. This misperception. To exhaust gas flow rate is maximum (and therefore purging), it is necessary that the maximum diameter was first “track” and not at the end.

After installation of the overbust we get, ie the pressure peaks will jump to 0.9 bar, in rare cases, up to 1 bar. Stable pressure rises from 0.68-0.72 to about 0.85. That is, we have already received an increase in power.

Air filter. A very important device. It allows the engine to “breathe” more freely, as well as release. In our opinion, one of the most sophisticated and simple is Apexi PowerIntake (or SuperIntake). It’s simple to buy it, maintain, and its characteristics are more than sufficient. It is not recommended to use paralon “fungi” such as the HKS, because they are good in Japan, where the roads are washed with shampoo and clean, and we are pretty much suck with the sand and dust that accelerates engine wear at times! If the car came with the filter, remove it immediately!

According to the results of the pump replacement, inlet and outlet we get to the 1JZ-GTE (and on the same 2JZ-GTE) from about 320 to 330 hp.

Boost controller. Apexi AVC-R, Greddy Profec-e01 etc.  devices are very good and can regulate the boost pressure, struggling with over boost, etc., but are very expensive. Mid-range devices such as Blitz SBC Spec S or R also can cope with their tasks, and their cost is much more pleasing. The simplest and cheapest solution is to buy a used  boost controller of the old type like Apexi or HKS EVC. They can be found for $ 100-150, and can also cope with the task, simple to use and reliable.

After the installation of boost controller we can build up pressure to stable 0.93 bars, then there is a limit of fuel and ignition maps on a desktop computer. A little more pressure and say hi to overboost and cut-off pressure, car jerking, etc.

Now it’s time to deal with ECU. We need the card for fuel and ignition with more than 0.93 bars.There are  several solutions here, but the most common – a piggyback. That is a “snag” of a standard computer. Two types of it: strip with a chip inserted into a standard ECU or external device-appendage.

Front intercooler. Necessary thing for boost up. Especially in summer.

In such a configuration, we get about 380 hp on the 1JZ-GTE and 400 hp on the 2JZ-GTE. If we have the full intake, exhaust, boost controller’s pump, ECU and front intercooler and the pressure of 1.2 bars.

Hey, since 1JZ and 2JZ are pretty much similar you can find more information at 2JZ page!

What to choose, 1JZ or 2JZ?

In favor of 1JZ says the cost of the engine in the secondary market and the abundance of cars going with this engine. On the basis of the machine with 1JZ you can easier to do the engine with 500hp.However, the concept of “peak power” and “long-term operation” when it comes to tuning the fore. The first DJ has a serious problem with cooling while increasing power. In the “native” for him 320-330 hp implicit configuration engineers cope, but as soon as we increase capacity in half, start to get out of the problem. Overheating of the 6-cylinder engine when operating in peak mode it is no news. It is one thing to travel 402 meters in a straight line, and the other – to move tens of minutes at “sneakers on the floor.” Overheated oil, lack of cross-

However, the concept of “peak power” and “long-term engine operation” when it comes to tuning is a main thing. The 1JZ has a serious problem with cooling while increasing power. In stock 320-330 hp  are normal for it, but as soon as we increase capacity in half the problems begins. Overheating of the 6-cylinder engine when operating in peak mode is normal.One thing is to travel 402 meters in a straight line, and the other – to move tens of minutes at “sneakers on the floor.” Overheated oil, lack of cross-antifreeze channels, the main limitation of the radiator, it all starts to play a decisive “killer” role in the operation of the engine. Western experts usually say: «no replacement for displacement». No turbines and tricks never replace the volume. The smaller the engine forcing per liter, the more reliable all  configuration will be and the longer it will operate. Therefore, if you have the budget, and the possibility – place the 2JZ-GTE! It is stronger, bigger and has higher margin of safety.

But the choice is yours. 1JZ can cope the peak power of 500 hp, but how you will exploit it – is another question.



2011 All Japan 1JZ drift Japan 1JZ drift


Nissan 1JZ drift wagon


  1. https://en.wikipedia.org/wiki/Toyota_JZ_engine
  2. http://dustrunnersauto.com/1jz-vs-2jz/
  3. http://mywikimotors.com/toyota-1jz/
  4. http://jdmengineworld.com/index.php?main_page=index&cPath=6
  5. http://www.jdmspecengines.com/toyota-engines/jz-series/1jz-gte.html
Rating: 5.0. From 1 vote.
Please wait...
Discussion: There are 3 comments.
  1. […] mostly because of the wrong exploitation. More info about general problems you can find at our 1JZ page, because all of them are […]

    No votes yet.
    Please wait...
  2. […] 2.5L 1JZ-GE petrol I6 […]

    No votes yet.
    Please wait...
  3. […] 2.5L 1JZ-GE I6 […]

    No votes yet.
    Please wait...
Share your opinion
You can use next tags:
<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

© 2017 Engine's Work